Quantifying Social Biases in NLP: A Generalization and Empirical Comparison of Extrinsic Fairness Metrics

Paula Czarnowska, Yogarshi Vyas, Kashif Shah

Abstract


Measuring bias is key for better understanding and addressing unfairness  in NLP/ML models. This is often done via fairness metrics which quantify the differences in a model’s behaviour across a range of demographic groups. In this work, we shed more light on the differences and similarities between the fairness metrics used in NLP. First, we unify a broad range of existing metrics under three generalized fairness metrics, revealing the connections between them. Next, we carry out an extensive empirical comparison of existing metrics and demonstrate that the observed differences in bias measurement can be systematically explained via differences in parameter choices for our generalized metrics.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Association for Computational Linguistics

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.