Skip to main navigation menu Skip to main content Skip to site footer

ProoFVer: Natural Logic Theorem Proving for Fact Verification


Fact verification systems typically rely on neural network classifiers for veracity prediction which lack explainability. This paper proposes ProoFVer, which uses a seq2seq model to generate natural logic-based inferences as proofs. These proofs consist of lexical mutations between spans in the claim and the evidence retrieved, each marked with a natural logic operator. Claim veracity is determined solely based on the sequence of these operators. Hence, these proofs are faithful explanations, and this makes ProoFVer faithful by construction. Currently, ProoFVer has the highest label accuracy and the second-best Score on the FEVER leaderboard. Furthermore, it improves by 13.21% points over the next best model on a dataset with counterfactual instances, demonstrating its robustness. As explanations, the proofs show better overlap with human rationales than attention-based highlights and the proofs help humans predict model decisions correctly more often than using the evidence directly.
Article at MIT Press Presented at EMNLP 2022

Author Biography

Amrith Krishna

Postdoc, CST, University of Cambridge